### АННОТАЦИЯ ПРОГРАММЫ ИТОГОВЫХ КОМПЛЕКСНЫХ ИСПЫТАНИЙ (ИТОГОВОЙ ГОСУДАРСТВЕННОЙ АТТЕСТАЦИИ)

Направление подготовки <u>24.04.01 «Нефтегазовое дело»</u> Програма подготовки «Ресурсосберегающие технологии в нефтепродуктообеспечении»

**Целью и основными задачами ИГА** является оценка качества освоения образовательной программы и качество формирования у магистрантов-выпускников общекультурных и профессиональных компетенций.

Содержание итоговых комплексных испытаний (итоговой государственной аттестации) студентов-выпускников ВУЗа базируется на компетенциях выпускника вуза как совокупного ожидаемого результата образования по ООП ПО и включает темы магистерских диссертаций выполняемых в период прохождения практики и выполнения научно-исследовательской работы и представляет собой самостоятельную и логически завершенную выпускную квалификационную работу, связанную с решением задач того вида деятельности, к которым готовится магистрант (научно-исследовательской, научно-педагогической, технологической) занятий, представленных в виде перечня примерных тематик магисторских работ.

Содержание ИГА: Эксплуатация линейной части магистральных нефтепроводов в широт. Электрохимическая арктических защита магистральных нефтепроводов в условиях экваториальных широт. Обосновать выбор охранных мер внешней защиты MH в средней полосе  $P\Phi$ . Проблемы эксплуатации оборудования, территории, зданий и сооружений головных и промежуточных нефтеперекачивающих станций. Анализ проблем возникающие при эксплуатации насосного оборудования нефтеперекачивающей станции. Выбор и обоснование оборудования для вентиляции, водоснабжения, теплоснабжения и канализации производственных нефтеперекачивающей станции. Расчет необходимой мощности сети и разработка мероприятий энергосбережения для электроснабжения пункта подогрева нефти (ППН) Расчет необходимой мощности сети и разработка мероприятий энергосбережения для электроснабжения станции смешения нефти (ССН) на основе анализа промысловых и лабораторных данных. Общая трудоемкость итоговой магисторской диссертации составляет 324 часов:

Формируемые компетенции: ОК-1, ОК-2, ОК-3, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ОПК-5, ОПК-6, ПК-1, ПК-2, ПК-3, ПК-4, ПК-5, ПК-6, ПК-7, ПК-8, ПК-9, ПК-10, ПК-11, ПК-12, ПК-13, ПК-14, ПК-15, ПК-16, ПК-17, ПК-18, ПК-19, ПК-20, ПК-21, ПК-22,ПК-23.

Курс 2 (4 семестр, кол-во недель 6, защита)

Общая трудоемкость 9 з.е. / 324 ак.ч.

| Зав. кафедрой, профессор              | (В.А. Косьянов) |
|---------------------------------------|-----------------|
| Преподаватель-разработчик, профессор. | (М.И. Григорьев |

#### **Б2.П.4 «ПЕДАГОГИЧЕСКАЯ ПРАКТИКА»**

**Целью преподавания дисциплины** является приобретение студентами навыков педагога-исследователя, владеющего современным инструментарием науки для поиска и интерпретации информационного материала с целью его использования в педагогической деятельности.

Содержание дисциплины **Б2.П.4** «**Педагогическая практика**» включает темы занятий, представленных в виде 2 модулей, общей трудоёмкостью 324 часа: ознакомление с программой практики, знакомство с педагогическим коллективом учебного заведения; специфики, учебно-воспитательной концепции, общения; изучение его стиля ознакомление с функциональными обязанностями преподавателя, изучение коллектива обучающихся, планирование учебной и воспитательной работы, овладение методикой проведения и последующего анализа учебных и воспитательных организации, мероприятий, приобретение практических навыков самостоятельно решать проблемы, связанные с дисциплиной, индивидуальными и возрастными особенностями обучающихся, коммуникативными барьерами, выбор дисциплины, составление индивидуального плана практики, подготовка к проведению занятий, подготовка учебно-методического формирование профессиональных умений преподавания, материала, современных технологий и методик обучения, разработка и реализация методических моделей, методик, технологий и приемов обучения, анализ результатов их использования.

Формируемые компетенции: ОПК-1, ОПК-3, ОПК-5, ПК-1, ПК-3, ПК-12

Курс 2 (4 семестр, кол-во недель 4, зачет)

Общая трудоёмкость **7 з.е. / 252 ак. час.**, самостоятельная работа студента – **252 ак. час.** 

| Заведующий кафедрой, профессор | (В.А. Косьянов) |  |
|--------------------------------|-----------------|--|
|                                |                 |  |
| Преподаватель-разработчик      | (С.В. Головин)  |  |

### **Б2.П.3 «ПРОИЗВОДСТВЕННАЯ ПРАКТИКА»**

**Целью преподавания дисциплины** является закрепление теоретических знаний, профессиональных умений и навыков, полученных студентами в процессе освоения комплекса специальных дисциплин по направлению подготовки (специальности) 130400 Горное дело, специализация «Электрификация и автоматизация горного производства».

Содержание дисциплины **Б2.П.3** «Производственная практика» включает темы занятий, представленных в виде 1 модуля, общей трудоёмкостью 324 часа: ознакомление с программой практики, инструктаж по технике безопасности при работе на производственных объектах, противопожарной безопасности, контрольные тесты на глубину усвоения правил обращения с энергоустановками, устройства ДВС и видов энергетических установок, практические занятия по обслуживанию, пуску, наладке и эксплуатации энергоустановок, комплексов обеспечения электробезопасности безопасной эксплуатации установок, технологических использованию теплоутилизационных установок, эксплуатации подстанций, выбора способа комплексного энергоснабжения потребителей.

Формируемые компетенции: ОПК-1, ОПК-3, ОПК-5, ПК-1, ПК-2, ПК-12 Курс **2** (3 семестр, кол-во недель 6, зачет) Общая трудоёмкость **9 з.е. / 324 ак. час.** 

| Заведующий кафедрой, профессор | (В.А. Косьянов) |
|--------------------------------|-----------------|
|                                |                 |
| Преподаватель-разработчик      | (С.В. Головин)  |

### АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ дисциплины <u>Б1.В.ДВ.2.2</u>«Техническое обслуживание и эксплуатация электрического и электромеханического оборудования

**Целью преподавания дисциплины является** формирование практических навыков планирования и реализации технического обслуживания электрического и электромеханического оборудования. Освоение правил технической эксплуатации электромеханического оборудования и энергетических установок. Освоение базового обеспечения для решения указанных задач, Ознакомление студентов с путями, методами и приемами оптимизации основных процессов технического обслуживания в соответствии со структурой ремонтного цикла оборудования.

Содержание дисциплины **Б1.В.ДВ.2.2** «**Техническое обслуживание и эксплуатация электрического и электромеханического оборудования**» включает темы занятий, представленных в виде 2 модулей, общей трудоемкостью 18 часов: введение, методы планирования и построения календарного графика технического обслуживания и ремонта механического и электрического оборудования, правила эксплуатации машин, устройств и оборудования различного назначения.

Формируемые компетенции: ОПК-4, ПК-10, ПК-19

Курс 1 (1семестр, кол-во недель 18, зачет)

Общая трудоемкость **23.е.**/ **72 ак.ч.**, лекции - практические занятия - **18 ак.ч.**, самостоятельная работа студента **54 ак.ч.** 

| Зав. кафедрой, профессор        | Косьянов В.А   |
|---------------------------------|----------------|
| Преподаватель-разработчик, доц. | Басинский В.Г. |

| «УТ                | ВЕРЖДАЮ»:    |
|--------------------|--------------|
| Директор ИСТГРГиНД | Клочков Н.Н. |
|                    |              |
| « »                | 2015 г.      |

### Б.1.В.ДВ.1.1 «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»

Направление подготовки/ специальности 24.01.04 «Нефтегазовое дело»

Профиль/ специализация – Ресурсосберегающие технологии в нефтепродуктообеспечении

Квалификация (степень) магистр

Форма обучения очная

Срок освоения ООП ВО

Факультет Техники разведки и разработки

Кафедра «Механизации, автоматизации и энергетики горных и геологоразведочных работ»

| Формируемые компетенции –ОК-3, ПК-7, ПК-7, ПК-21 |                                                            |                          |       |
|--------------------------------------------------|------------------------------------------------------------|--------------------------|-------|
| Курс                                             | 1                                                          | Семестр                  | 1     |
| Лекции                                           | нет                                                        | Количество недель        | 18    |
| Практические занятия                             | 18ак.час.                                                  | Промежуточная аттестация | зачет |
| Лабораторные занятия                             | нет                                                        | Курсовой проект (работа) | нет   |
| Самостоятельная работа                           | 90ак.час.                                                  |                          |       |
| Общая трудоемкость освоения                      | 3 з.е. (108ак. час.,вт.ч. аудиторных занятий - 18ак. час.) |                          |       |
| учебной дисциплины                               |                                                            |                          |       |

| Заведующий кафедрой       | (В.А. Косьянов)   |  |
|---------------------------|-------------------|--|
|                           |                   |  |
| Преподаватель-разработчик | (И.Н. Оливетский) |  |

Москва, 2015 г.

|            |       | «УТВЕРЖДАЮ»:     |
|------------|-------|------------------|
| Директор И | СТГРГ | иНД Клочков Н.Н. |
|            | »>    | 2015 г.          |

### Б.1.В.ОД.2 «Технология металлов и трубопроводно-строительных материалов»

Направление подготовки/ специальности 24.01.04 «Нефтегазовое дело»

Профиль/ специализация – Ресурсосберегающие технологии в нефтепродуктообеспечении

Квалификация (степень) магистр

Форма обучения очная

Срок освоения ООП ВО

Факультет Техники разведки и разработки

Кафедра «Механизации, автоматизации и энергетики горных и геологоразведочных работ»

| Формируемые компетенции – ОК-3, ПК-7, ПК-7, ПК-21 |               |                        |                              |       |
|---------------------------------------------------|---------------|------------------------|------------------------------|-------|
| Курс                                              |               | 1                      | Семестр                      | 2     |
| Лекции                                            |               | 12                     | Количество недель            | 17    |
| Практичес                                         | ские занятия  | 12                     | Промежуточная                | зачёт |
|                                                   |               | ак.час.                | аттестация                   |       |
| Лаборатор                                         | ные занятия   | нет                    | Курсовой проект (работа)     | нет   |
| Самостоят                                         | ельная работа | 48                     | Контроль                     | нет   |
|                                                   |               | ак.час.                |                              |       |
| Общая                                             | трудоемкость  | 2 3.e. (72             | 2 ак. час.,в т.ч. аудиторных |       |
| освоения                                          | учебной       | занятий – 34 ак. час.) |                              |       |
| дисциплины                                        |               |                        |                              |       |

| Заведующий кафедрой       | (В.А. Косьянов) |  |  |
|---------------------------|-----------------|--|--|
|                           |                 |  |  |
| Преподаватель-разработчик | (А.П. Жернаков) |  |  |

| Директор I | ГВЕРЖДАЮ»:<br>[ Клочков Н.Н. |
|------------|------------------------------|
| <u> </u>   | <br>_2015 г.                 |

### Б.1.В.ОД.5 «Строительные и дорожные машины»

Направление подготовки/ специальности 24.01.04 «Нефтегазовое дело»

Профиль/ специализация – Ресурсосберегающие технологии в нефтепродуктообеспечении

Квалификация (степень) магистр

Форма обучения очная

Срок освоения ООП ВО – 2 года.

Институт современных технологий геологической разведки, горного и нефтегазового дела

Кафедра «Механизации, автоматизации и энергетики горных и геологоразведочных работ»

| Формируемые компетенции – ОК-3, ПК-7, ПК-14 |                |                                       |                   |     |
|---------------------------------------------|----------------|---------------------------------------|-------------------|-----|
| Курс                                        |                | 2                                     | Семестр           | 4   |
| Лекции                                      |                | 13                                    | Количество недель | 13  |
| Практиче                                    | ские занятия   | 26                                    | 26 Промежуточная  |     |
|                                             |                |                                       | аттестация        |     |
| Лаборато                                    | рные занятия   | нет Курсовой проект (работа)          |                   | нет |
| Самостоя                                    | тельная работа | 24 Контроль                           |                   | 45  |
| Общая                                       | трудоемкость   | 3 з.е. (108 ак. час.,вт.ч. аудиторных |                   |     |
| освоения                                    | учебной        | занятий – 39 ак. час.)                |                   |     |
| дисциплины                                  |                |                                       |                   |     |

| Заведующий кафедрой       | (В.А. Косьянов)  |  |
|---------------------------|------------------|--|
|                           |                  |  |
| Преподаватель-разработчик | (В.Г. Басинский) |  |

В результате изучения учебной дисциплины «Строительные и дорожные машины» обучающиеся должны:

Знать: технологические возможности строительных и дорожных машин; цели и задачи, для которых применяются строительные и дорожные машины; основные виды и типоразмеры строительных и дорожных машин и области их применения; возможные компоновочные схемы строительных и дорожных машин и их конструктивные узлы; основные принципы эксплуатационных расчетов и тенденции развития строительных и дорожных машины; методы моделирования процессов в строительных и дорожных машинах с использованием компьютерных информационных технологий.

**Уметь:** с учетом областей применения выбирать строительные и дорожные машины; оценивать эффективность оборудования в конкретных производственных условиях; применять современные методы расчета основных параметров строительных и дорожных машин; применять современные системы компьютерных технологий для решения конкретных задач при выборе строительных и дорожных машин; составлять техническое задание на проектирование строительных и дорожных машин; оценивать варианты при выборе строительных и дорожных машин; пользоваться приборами и оборудованием для измерения технологических параметров при исследовании строительных и дорожных машин.

**Владеть:** аналитическими методами и математическим аппаратом для решения практических задач в своей профессиональной области.

способами эффективного выбора и применения строительных и дорожных машин для решения конкретных геологоразведочных задач;

правилами безопасности и охраны окружающей среды при эксплуатации строительных и дорожных машин.

Программой учебной дисциплины предусмотрены следующие виды учебной работы;

| Вид учебной работы           | Всего З.Е. |
|------------------------------|------------|
|                              | (часов)    |
| Аудиторные занятия (всего)   | 39         |
| в том числе:                 |            |
| Лекции (Л)                   | 13         |
| Практические занятия (ПЗ)    | 26         |
| Лабораторные работы (ЛР)     | -          |
| Самостоятельные работы       | 24         |
| студентов (всего)            |            |
| Курсовой проект              | -          |
| Вид промежуточной аттестации | экзамен    |

Общая трудоемкость освоения учебной дисциплины составляет: 3 з.е. или 108 час.

| «УТ                | ВЕРЖДАЮ»    |
|--------------------|-------------|
| Директор ИСТГРГиНД | Клочков Н.Н |
|                    |             |
| « »                | 2015 г      |

### Б.1.В.ОДВ.6 «Ресурсосберегающие технологии в нефтепродуктообеспечении и газоснабжения»

Направление подготовки/ специальности 24.01.04 «Нефтегазовое дело» Профиль/ специализация — Ресурсосберегающие технологии в нефтепродуктообеспечении Квалификация (степень) магистр Форма обучения очная Срок освоения ООП ВО Факультет Техники разведки и разработки

Кафедра «Механизации, автоматизации и энергетики горных и геологоразведочных работ»

| Формируемые компетенции – ОК-3 | , ПК-7, ПК-7, ПК-21 |                                         |            |
|--------------------------------|---------------------|-----------------------------------------|------------|
| Курс                           | 1                   | Семестр                                 | 2          |
| Лекции                         | нет                 | Количество недель                       | 17         |
| Практические занятия           | 34 ак.час.          | Промежуточная аттестация                | экзамен    |
| Лабораторные занятия           | нет                 | Курсовой проект (работа)                | нет        |
| Самостоятельная работа         | 11 ак.час.          | Контроль                                | 63 ак. час |
| Общая трудоемкость освоения    | 3 з.е. (108 ак      | час.,в т.ч. аудиторных занятий – 34 ак. |            |
| учебной дисциплины             | час.)               |                                         |            |

| Заведующий кафедрой       | (В.А. Косьянов) |
|---------------------------|-----------------|
|                           |                 |
| Преподаватель-разработчик | (А.П. Жернаков) |

Москва, 2015 г.

#### Б1.Б.1«Философия и методология науки»

**Целью преподавания дисциплин** являетсяформирование системных знаний картины мировосприятия магистрантом объективнойреальности в ее отличии от реальности технической и социальной, формирование убудущих магистров представления о современной философии и методологии науки и еезначении для качества профессиональной деятельности в области «Нефтегазовое дело»; углубление общемировоззренческой и общеметодологической подготовкимолодых ученых

Содержание теоретического раздела дисциплины **Б1.Б.1**«Философия и методология науки» включает темы занятий, представленных в виде 10 модулей, общей трудоемкостью 72 часа: Предмет и основные концепции современной философии науки; Наука в культуресовременной цивилизации. Научная рациональность; Возникновение науки иосновные стадии ее исторической эволюции; Структура научного знания. Языки науки; Основаниянауки и методы научного познания; Динамика науки как процесспорождения нового знания. Научное объяснение; Научные традиции и научныереволюции. Типы научнойрациональности; Наука как социальный институт; Философские проблемы естествознания, техники и технических наук; Философские проблемыгеологических наук и их технических приложений.

Формируемые компетенции: **ОК-1, 2, 3; ОПК-6** Курс **1** (1 семестр, кол-во недель 18, экзамен.)

Общая трудоемкость **23.е.**/ **72ак.ч.**, практические занятия - **18ак.ч.**, самостоятельная работа студента**27ак.ч.**, контроль – **27ак.ч.** 

| Зав. кафедрой, профессор        |
|---------------------------------|
|                                 |
| Преподаватель-разработчик, доц. |

### **Б1.Б.2** «Математическое моделирование в задачах нефтегазовой отрасли»

**Целью преподавания дисииплин** является изучение методов математического моделирования в задачах нефтегазовой отрасли, уяснение природы рассматриваемых тепло- и гидродинамических явлений при движении сложных углеводородов, развитие технологических навыков построения математических моделей сопряженных процессов в термодинамических системах типа "рабочая тело – стенка - окружающая внешняя среда"; формирование у обучающихся базовых знаний по проблемам разработки практических методов и технологий аналитического и приближенного численного анализа режимов функционирования сложных трубопроводных систем, комплексного решения производственных задач повышения безопасности, экологичности и эффективности объектов топливно-энергетического комплекса; изучение некоторых практических аспектов применения современных численных методов и соответствующего программноматематического обеспечения; знакомство с популярными в нефтегазовых приложениях многопараметрическими моделями для описания процессов переноса тепла, массы и импульса.

Б1.Б.2 Содержание теоретического дисциплины «Математическое раздела задачах нефтегазовой отрасли» моделирование В включает темы занятий. представленных в виде 5 модулей, общей трудоемкостью 108 часа: Математические модели реальных явлений. Принципы построения физических и математических моделей; Методы изучения тепломассообмена и моделирования процессов транспорта природного сырья по трубопроводам. Методы дискретизации уравнений и граничных условий; Методы математического моделирования сопротивления, теплообмена и напряженно-деформируемого состояния трубопроводов и процессов их аварийного разрушения; Математические методы гидрогазодинамики, теплообмена и технологии снижения затрат на транспорт газов и жидкостей. Дифференциальные модели; Анализ причин и механизмов моделирования воспламенения и горения метано-пропановодородо-воздушной смеси.

Формируемые компетенции: **ОК-1**, **2**; **ОПК-1**; **ПК-1** Курс **1** (1 семестр, кол-во недель 16, экзамен.)

Общая трудоемкость **33.е./ 108 ак.ч.**, практические занятия - **36 ак.ч.**, самостоятельная работа студента **36 ак.ч.**, контроль – **36 ак.ч.** 

| Зав. кафедрой, профессор        |
|---------------------------------|
|                                 |
| Преподаватель-разработчик, доц. |

#### Б1.Б.3 «Методы математической физики»

**Целью преподавания дисциплин** является *ознакомление студентов* с основными типами уравнений математической физики, выводом их из физических задач и методами решения; *закрепление представлений* о математической физике как об обширной области математического моделирования, имеющей важное прикладное значение; *обучение* методам сведения различных естественнонаучных задач к уравнениям математической физики, их решения и правильной интерпретации полученных результатов в практических целях.

Содержание теоретического раздела дисциплины **Б1.Б.3** «**Методы математической физики**» включает темы занятий, представленных в виде 5 модулей, общей трудоемкостью 108 часа: Основные уравнения математической физики; Классификация уравнений. Постановка краевых задач; Гиперболические уравнения; Параболические уравнения; Эллиптические уравнения.

Формируемые компетенции: **ОК-1**, **2**, **3** Курс **1** (1 семестр, кол-во недель 16, экзамен.)

Общая трудоемкость **33.е.**/ **108 ак.ч.**, практические занятия - **36 ак.ч.**, самостоятельная работа студента **36 ак.ч.**, контроль – **36 ак.ч.** 

| Зав. кафедрой, профессор        |
|---------------------------------|
|                                 |
| Преподаватель-разработчик, доц. |

### Аннотация рабочей программы учебной дисциплины Б1.Б.4 «ОБЩАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ»

*Цель:* Дать общие представления о динамике, материального тела, системы тел и механических взаимодействиях материальных объектов (тел) для решения конкретных задач, которые ставит современная техника. Ознакомить с общими методами расчета на прочность конструкций, элементов машин и механизмов, обеспечивающих их работоспособность.

Задачи дисциплины: Сформулировать общие подходы К закономерностям динамических процессов при эксплуатации бурового и горного оборудования для определения динамических и прочностных характеристик; Дать общее представление о напряжениях, возникающих в конструкциях и методах их определения. Изучить устройство и виды взаимодействий механических частей горных машин. Научить способам выбора основных критериев, обеспечивающих надежную работу машин. Научить основным методам расчета типовых элементов машин конструкций, обеспечивающих ИΧ надежную работу В процессе эксплуатации.

Основные разделы дисциплины: основные понятия; осевое растяжение и сжатие; сдвиг и кручение; геометрические характеристики плоских сечений; прямой поперечный изгиб; анализ напряженного и деформированного состояния материала в точке и оценка прочности; расчет на прочность статически неопределимых стержневых систем; прочность при переменных нагрузках; прочность при динамической нагрузке.

Формируемые компетенции: ОК-1, ОК-2, ОК-3

| Вид учебной работы         | Всего | Семест |
|----------------------------|-------|--------|
|                            | часов | p      |
|                            |       | 2      |
| Аудиторные занятия (всего) | 34    | 34     |
| В том числе:               | -     | -      |

| Лекции                               | 17   | 17   |
|--------------------------------------|------|------|
| Практические занятия (ПЗ)            | 17   | 17   |
| Самостоятельная работа (всего)       | 74   | 74   |
| В том числе:                         |      |      |
| Вид промежуточной аттестации (зачет, | зач. | зач. |
| экзамен)                             |      |      |
| Общая трудоемкость                   | 108  | 108  |
| час.                                 | 3    | 3    |
|                                      |      |      |
| зач. ед.                             |      |      |

| Зав. кафедрой, профессор        | Куликов   |
|---------------------------------|-----------|
| B.B.                            |           |
| Преподаватель-разработчик, доц. | Арсентьев |
| Ю.А.                            |           |

#### Б1.Б.5 «Экономика и управление нефтегазовым производством»

**Целью преподавания дисциплин** является изучение общих принципов, теоретических положений и практических подходов к решению многообразных проблем, связанных с экономикой и управлением нефтегазовым производством, получение знаний и навыков по экономике и управлению недропользованием в целях повышения ответственности за результаты принимаемых решений по проведению разведочных и добычных работ на углеводородное сырье в том числе в сложных горно-геологических условиях и повышения экономической эффективности работы предприятий нефтегазового сектора.

Содержание теоретического раздела дисциплины **Б1.Б.5** «Экономика и управление нефтегазовым производством» включает темы занятий, представленных в виде 9 модулей, общей трудоемкостью 108 часа: Введение; Предмет экономики и организации, цели и задачи; Ресурсы предприятия. Кадры. Организация труда и заработной платы на предприятии нефтегазовой отрасли; Материально-техническая база организации. Основные фонды; Оборотные средства и оборотные фонды предприятия нефтегазовой отрасли; Издержки производства и реализации продукции. Себестоимость. Прибыль; Цена и ценообразование на предприятиях НГК; Рентабельность — показатель эффективности работы организации (предприятия). Виды рентабельности. Методика расчета рентабельности; Инвестиции. Оценка эффективности инвестиционных проектов и учет фактора времени.

Формируемые компетенции: **ОК-1**, **2**, **3**; **ОПК-1**, **4** Курс **1** (1 семестр, кол-во недель 16, экзамен.)

Общая трудоемкость **33.е.**/ **108 ак.ч.**, практические занятия - **36 ак.ч.**, самостоятельная работа студента **36 ак.ч.**, контроль – **36 ак.ч.** 

| Зав. кафедрой, профессор        |
|---------------------------------|
|                                 |
| Преподаватель-разработчик, доц. |

### Б1.Б.6 «Методология проектирования в нефтегазовой отрасли

#### и управление проектами»

**Целью преподавания дисциплин**являетсяготовность выпускников к производственнотехнологической и проектной деятельности, обеспечивающей модернизацию, внедрение и эксплуатацию оборудования для добычи, транспорта и хранения нефти и газа; к проектноконструкторской и производственно-технологической деятельности области нефтегазового дела; к умению обосновывать и отстаивать собственные заключения и выводы в аудиториях разной степени междисциплинарной профессиональной подготовленности; к самообучению и непрерывному профессиональному самосовершенствованию в условиях автономии и самоуправления.

Содержание теоретического раздела дисциплины **Б1.Б.6** «**Методология проектирования в нефтегазовой отрасли и управление проектами**» включает темы занятий, представленных в виде 4 модулей, общей трудоемкостью 18 часа:Введение. Технологии проектирования и моделирования объектов исследований в области нефтегазового дела. Программные средства, применяемые при проектировании и сопровождающие жизненный цикл месторождений. Оптимизация проектирования объектов нефтегазового комплекса.

Формируемые компетенции: **ОК-1**, **2**, **3**; **ПК-3**, **5** Курс **1** (1 семестр, кол-во недель 16, экзамен.)

Общая трудоемкость **33.е.**/ **108 ак.ч.**, практические занятия - **18 ак.ч.**, самостоятельная работа студента **63 ак.ч.**, контроль – **27 ак.ч.** 

| Зав. кафедрой, профессор  |
|---------------------------|
|                           |
| Преподаватель-разработчик |

#### Б1.Б.7 «Технико-экономический анализ»

**Целью преподавания дисциплин** является овладение будущим магистром по программе подготовки «Строительство глубоких нефтяных и газовых скважин в сложных горногеологических условиях» необходимых знаний, получение умения и навыков в области анализа производственно-хозяйственной деятельности предприятий, занимающихся строительством глубоких нефтяных и газовых скважин, в том числе: теоретических знаний по осуществлению производственно-хозяйственного анализа; практических знаний в области владения его методикой; навыков в технике проведения производственно-хозяйстенного анализа деятельности предприятия.

Содержание теоретического раздела дисциплины Б1.Б.7 «Технико-экономический анализ» включает темы занятий, представленных в виде 14 модулей, общей трудоемкостью 72 часа: Понятие и значение анализа производственно-хозяйственной деятельности. Предмет, содержание и задачи анализа производственно-хозяйственной деятельности. Методы комплексного экономического анализа производственно-хозяйственной деятельности. Способы обработки экономической информации производственно-хозяйственной деятельности. Методика выявления и подсчета резервов в анализе производственно-хозяйственной деятельности. Организация и информационное обеспечение анализа производственно-хозяйственной деятельности. Анализ эффективности и интенсивности использования основного предприятия. Анализ эффективности использования основного капитала. Анализ использования материальных ресурсов предприятия. Анализ использования трудовых ресурсов предприятия. Анализ маркетинговой деятельности предприятий. Анализ производства и реализации продукции. Анализ себестоимости продукции, работ, услуг. Анализ прибыли и рентабельности.

Формируемые компетенции: **ОК-1**, **2**, **3**; **ПК-3**, **5** Курс **2** (3 семестр, кол-во недель 16, зачет.)

Общая трудоемкость **33.е./ 108 ак.ч.**, практические занятия - **12 ак.ч.**, самостоятельная работа студента **84 ак.ч.**, лекций – **12 ак.ч.** 

| Зав. кафедрой, профессор        |  |
|---------------------------------|--|
|                                 |  |
| Преподаватель-разработчик, доц. |  |

«УТВЕРЖДАЮ»:

|                                                                                                                                          |                                     | Директор ИСТГРГиНД                   | Клочков Н.Н. |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------|
|                                                                                                                                          |                                     | « <u></u> »_                         | 2015 г.      |
|                                                                                                                                          |                                     |                                      |              |
| Б1.Б.8 «СИСТЕМЫ А                                                                                                                        | АВТОМАТИЗІ                          | <b>ИРОВАННОГО ПРОЕКТИРО</b>          | ВАНИЯ»       |
| Профиль/ специализа нефтепродуктообеспечении Квалификация (степень) м Форма обучения очная Срок освоения ООП ВО Факультет Техники развед | щия –<br>пагистр<br>цки и разработк |                                      | ологии в     |
| работ»                                                                                                                                   |                                     |                                      |              |
| Формируемые компетенци                                                                                                                   | и – ОК-3, ПК-7                      | , ПК-7, ПК-21                        |              |
| Курс                                                                                                                                     | 1                                   | Семестр                              | 2            |
| Лекции                                                                                                                                   | 17                                  | Количество недель                    | 17           |
|                                                                                                                                          | ак.час.                             |                                      |              |
| Практические занятия                                                                                                                     | 17                                  | Промежуточная                        | зачет        |
| П. б                                                                                                                                     | ак.час.                             | аттестация                           |              |
| Лабораторные занятия                                                                                                                     | нет                                 | Курсовой проект (работа)             | 2            |
| Самостоятельная работа                                                                                                                   | 38<br>ак.час.                       |                                      |              |
| Общая трудоемкость освоения учебной дисциплины                                                                                           | 2 з.е. (7<br>занятий - 34 аг        | 2 ак. час.,вт.ч. аудиторных к. час.) |              |
| Заведующий кафедрой                                                                                                                      |                                     | (В.А. Косьянов)                      |              |
| Заведующий кафедрой                                                                                                                      |                                     | (В.А. Косьянов)                      |              |

Преподаватель-разработчик\_\_\_\_\_\_(М.Ю. Крылков)

#### Б1.Б.9 «Информационные системы»

**Целью преподавания дисциплин** овладение знаниями структурирования полученных данных, методами их обработки и последующего анализа для принятия оптимального технологического решения с помощью современных информационных технологий; Получения навыков использования современных коммуникационных средств, вычислительной техники и программного обеспечения реализации информационных процессов современного геологоразведочного производства; Изучение современных алгоритмов решения функциональных, вычислительных метолик математического моделирования технологий и процессов.

Содержание теоретического раздела дисциплины **Б1.Б.9** «Информационные системы» включает темы занятий, представленных в виде 6 модулей, общей трудоемкостью 72 часа: Возможности табличного процессора, позволяющие производить сложные инженерно математические расчеты для обработки данных с использованием встроенных функций разных категорий. Построение логических структур с применением логических функций, для технологических расчетов, учитывающих изменение входных Использование функций ЕСЛИ (IF), И (AND), ИЛИ (OR), ИСТИНА (TRUE), ЛОЖЬ (FALSE). Построение нестандартных типов диаграмм для наглядного сравнения и анализа числовых данных; Решение задач одно- и многокритериальной оптимизации. Изучение компонентов группы «Анализ «Что если». Работа с диспетчером сценариев. Умение подбирать параметры при решении трансцендентных уравнений. Методы поиска решения. Прогнозирование развития ситуаций разными способами. Сводные таблицы, их составление и эффективная работа с ними; Численные методы анализа данных. Принципы дискретной (конечной) математики. Методы численного дифференцирования и интегрирования. Оценка погрешностей применяемых численных методов. Реализация этих методов в табличных процессорах. Аппроксимация измеренного процесса. Достоверность аппроксимации. Оценка качества аппроксимации. Статистические характеристики измеряемого процесса. Их оценка с применением встроенных функций табличного процессора. Методы определения средних величин. Характеристика разброса измеряемой величины. Оценка стационарного и переходного процессов. Фильтрация данных. Построение экспоненциального фильтра. Медианный фильтр, особенности его применения. Сглаживание данных; Базы данных (БД). Системы управления базами данных (СУБД). Типы баз данных. Реляционные БД. Создание новых таблиц в базе данных, настройка их свойств и установление связей между ними. Импорт данных в БД. Настройка группировки и сортировки данных в отчетах. Вычисления в отчетах. Разновидности отчетов и использование их для представления информации. Печать отчетов, экспорт отчетов в формат PDF; Создание экранных форм для редактирования табличных данных. Создание запросов для обработки информации из таблиц. Создание отчетов для анализа и вывода на печать табличных данных. Настройка свойств, ограничивающих ввод данных в таблицу. Поиск данных в таблицах. Сортировка и фильтрация данных в таблицах. Создание простых запросов на основе одной или нескольких таблиц. Сортировка данных с помощью запросов. Установка критериев отбора записей. Вычисления в запросах.

Формируемые компетенции: **ОК-1, 2, 3; ОПК-2, 3; ПК-1** Курс **1** (1 семестр, кол-во недель 16, зачет.)

Общая трудоемкость **23.е.**/ **72 ак.ч.**, практические занятия - **18 ак.ч.**, самостоятельная работа студента **54 ак.ч.**, контроль – **27 ак.ч.** 

| Зав. | кафедрой, | профессор | ) |
|------|-----------|-----------|---|
|      |           |           |   |

21

| Преподаватель-разработчик, до | Щ. |
|-------------------------------|----|
|                               |    |

# Б1.В.ДВ.1 «Контрольно-измерительные приборы в нефтегазовом производстве»

**Целью преподавания дисциплины** является изучение основ функционирования и основных типов приборов и устройств электроники, поиск возможности использования их при разработке и функционировании средств измерений, обеспечении эффективности их использования при управлении технологическими процессами в нефтегазовом производстве.

Содержание теоретического раздела дисциплины **Б1.В.ДВ.1** «**Контрольно-измерительные приборы в нефтегазовом производстве**» включает темы занятий, представленных в виде 4 модулей, общей трудоемкостью 64 часа: Введение; Основное и вспомогательное оборудование; Виды регулирования; КИП, необходимые для функционирования нефтегазовых производств; Вопросы обеспечения безопасности; Автоматическое регулирование; Охрана окружающей среды.

Формируемые компетенции: ПК-14, ПК-15, ПК-17

Курс 1 (1 семестр, кол-во недель 18, зачет)

Общая трудоемкость 33.е./ 108 ак.ч., практические занятия - 18 ак.ч., самостоятельная работа студента 90 ак.ч.

| Зав. кафедрой, профессор        | (В.А. Касьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (Д.А. Эфстадиу) |

### Б1.В.ДВ.4.1 «Технологические процессы бурения скважин»

**Целью преподавания дисциплины** ознакомления студентов с особенностями технологических процессов при бурении наклонно направленных скважин с горизонтальным окончанием (горизонтальных скважин). Задачами дисциплины является подготовка специалистов, владеющих современными технологиями бурения скважин с большим отходом от вертикали на нефть и газ.

Содержание теоретического раздела дисциплины **Б1.В.ДВ.4.1** «**Технологические процессы бурения скважин**» включает темы занятий, представленных в виде 6 модулей, общей трудоемкостью 72 часа: Цели и задачи сооружения горизонтальных скважин; Профили наклонно-направленных скважин с горизонтальным окончанием; Технические средства для бурения наклонно направленных и горизонтальных скважин; Геонавигационные системы для проведения горизонтальной скважины по проектной трассе; Технология промывки микрепления горизонтальныхскважин; Заканчивание скважин.

Формируемые компетенции: **ПК-6**, **7**, **8**, **10**, **11** Курс **2** (1 семестр, кол-во недель 17, зачет.)

Общая трудоемкость **2 з.е./ 72 ак.ч.**, практические занятия - **17 ак.ч.**, самостоятельная работа студента **55 ак.ч.** 

| 55 ак.ч. |                                 |  |
|----------|---------------------------------|--|
|          |                                 |  |
|          | Зав. кафедрой, профессор        |  |
|          | Преподаватель-разработчик, доц. |  |

### Б1.В.ДВ.3 «Бурение и вскрытие пластов с аномально-низким пластовым давлением»

Целью преподавания дисциплины является изучение основных особенностей бурения горизонтальных скважин, анализ условий их применения и закономерностей формирования припластовой части скважин с горизонтальным окончанием, а также условий притока флюидов и углеводородных коллекторов, обоснование требований к буровым технологическим жидкостям для бурения и крепления горизонтальных скважин, изучение основных закономерностей удаления шлама при бурении в горизонтальных скважинах, изучение закономерностей процесса формирования камня из тампонажных растворов в условиях аномально низких пластовых давлений, разработка рекомендаций по рецептуре буровых технологических жидкостей и тампонажных растворов при бурении, вскрытии продуктивных пластов и креплении горизонтальных скважин, разработка требований по разделам изучаемой дисциплины при написании магистерской диссертации по технологии бурения горизонтальных скважин в сложных геологических условиях.

Содержание теоретического раздела дисциплины **Б1.В.ДВ.3** «**Бурение и вскрытие пластов с аномально-низким пластовым давлением**» включает темы занятий, представленных в виде 3 модулей, общей трудоемкостью **108** часов:

<u>1-ый модуль.</u> Особенности и условия применения горизонтальных скважин. Общие требования к буровым растворам для бурения горизонтальных скважин.

<u>2-ой модуль.</u> Расчет параметров промывки горизонтальных скважин.

<u>3-ий модуль.</u> Основные параметры технологического процесса цементирования горизонтальных скважин. Расчет параметров тампонажных смесей пониженной плотности в условиях аномально низких пластовых давлений (АНПД).

Формируемые компетенции: ПК-2, ПК-15, ПК-21.

Курс 2 (3 семестр, кол-во недель 12, зачет)

Общая трудоемкость **3 з.е./ 108 ак.ч.**, практические занятия - **12 ак.ч.**, самостоятельная работа студента **96 ак.ч.** 

| Зав. кафедрой, профессор        | (Н.В.Соловьев) |
|---------------------------------|----------------|
| Преподаватель-разработчик, доц. | (Н.В.Соловьев) |

# **Б1.В.ДВ.4** «Термодинамические процессы в машинах и установках нефтедобычи»

**Целью преподавания дисциплины** является закрепление представлений о тепловых системах и процессах, протекающих в таких системах, термодинамических законах, методах получения, преобразования, передачи и использования энергии в целях интенсификации и оптимизации технологических процессов. Обучение методам расчета тепловых процессов, циклов тепловых машин, экспериментального и аналитического определения характеристик тепло-энергетического оборудования, и их основных тепло-энергетических параметров.

Содержание теоретического раздела дисциплины **Б1.В.ДВ.4** «**Термодинамические** процессы в машинах и установках нефтедобычи»

включает темы занятий, представленных в виде 4 модулей, общей трудоемкостью 17 час: Введение. Изучаемый предмет, место и роль в подготовке кадров. Термодинамические параметры и процессы. Вода, водяной пар и влажный воздух. Энергетические машины.

Формируемые компетенции: ПК-21, ПК-23

Курс 1 (2 семестр, кол-во недель 17, зачет)

Общая трудоемкость **23.е.**/ **72 ак.ч.**, практические занятия - **17 час ак.ч.**, самостоятельная работа студента **55 ак.ч.** 

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (М.В. Меркулов) |

# АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ **Б1.В.ДВ.4.12** «Топливно-энергетический комплекс России»

**Целью преподавания дисциплины** является углубление полученных знаний для анализа и разработки перспективы и путей развития топливно-энергетического комплекса в современных условиях рыночной экономики.

Содержание теоретического раздела дисциплины Б1.В.ДВ.4.12 **«Топливно-энергетический комплекс России»** включает темы занятий, представленных в виде 4 разделов, общей трудоемкостью 72 часа \2.з.е.\: общее понятие ТЭК, определение состава ТЭК, исследование основных факторов развития комплекса, перспективы и пути развития комплекса в современных рыночных условиях.

Формируемые компетенции: ОПК-4, ПК-2, ПК-12, ПК-14, ПК-16

Курс 1 (2 семестр, кол-во недель 18, зачет)

Общая трудоемкость **2 з.е./ 72 ак.ч.**, лекции - **нет**, практические занятия - **18 ак.ч.**, самостоятельная работа студента **54 ак.ч.** 

| ессор (В.А.Кось | янов)  |
|-----------------|--------|
| доц (А.П.Жерн   | іаков) |

### Б1.В.ДВ.5.1 «ЭЛЕКТРООБОРУДОВАНИЕ БУРОВЫХ УСТАНОВОК»

Целью преподавания дисциплины <u>Б1.В.ДВ.5.1 «Электрооборудование буровых установок»</u>

является овладение студентов общими знаниями в области устройства, конструивания и эксплуатации электрооборудования буровых комплексов и систем их энергообеспечения при производстве геологоразведочных работ.

Содержание теоретического раздела дисциплины <u>**Б1.В.ДВ.5.1 «Электрооборудование</u>** <u>**буровых установок»**</u> включает темы занятий, представленных в виде 3 модулей, общей трудоемкостью 72 часа: Введение. Основы электропривода. Оборудование установок на базе привода переменного тока. Оборудование установок на базе привода постоянного тока. Особенности оборудования установок с частотно-регулируемым приводом. Основы энергообеспечения различных видов буровых установок.</u>

Формируемые компетенции: ПК-18, ПК-26, ПК-32, ПК-35.

Курс **1** (1 семестр, кол-во недель 17, экзамен.)

Общая трудоемкость **1 з.е./ 72 ак.ч.**, практические занятия - **18 ак.ч.**, самостоятельная работа студента **54 ак.ч.** 

| Зав. кафедрой, профессор  |  |
|---------------------------|--|
|                           |  |
|                           |  |
| Преподаватель-разработчик |  |

### Б1.В.ДВ.5.2 «Организация производства и управление проектами»

### Целью преподавания дисциплины является:

- сущность, содержание и задачи анализа производственно-хозяйственной деятельности предприятия;
- роль анализа производственно-хозяйственной деятельности предприятия в современном обществе;
  - основные области применения анализа в современной экономике;
  - связь анализа хозяйственной деятельности с другими науками;
- -основные методы анализа производственно-хозяйственной деятельности предприятия, их достоинства и недостатки;
  - -основные правила организации аналитической работы на предприятии;
- -основы информационного обеспечения анализа производственно-хозяйственной деятельности:
- методику выявления и подсчета резервов в анализе производственнохозяйственной деятельности;
- -зарубежный и отечественный передовой опыт аналитической деятельности в промышленности;
- существующие проблемы при использовании анализа производственно-хозяйственной деятельности предприятия на российских предприятиях, в т.ч. и в МСК;
- задачи и функции аналитической службы предприятия, а также основные виды организации аналитической работы;
- -основы оперативного, стратегического и прогнозного планирования, информационного и коммуникационного обеспечения управления аналитической деятельностью на предприятии.

### Содержание теоретического раздела дисциплины

### Б1.В.ДВ.5.2 «Организация производства и управление проектами»

включает темы занятий, представленных в виде 5 модулей, общей трудоемкостью 24 часа: Понятие об анализе производственно-хозяйственной деятельности, история его становления и развития. Предмет и объекты анализа хозяйственной деятельности. Способы измерения влияния факторов в детерминированном анализе. Способы группировки информации в анализе хозяйственной деятельности. Методика определения и обоснования величины резервов. Информационное обеспечение анализа. Анализ доходности собственного капитала. Анализ использования производственной мощности предприятия.

Формируемые компетенции: ПК-18, ПК-26, ПК-32, ПК-35.

Курс 1 (1 семестр, кол-во недель 17, экзамен.)

Общая трудоемкость **1 з.е./ 72 ак.ч.**, практические занятия - **18 ак.ч.**, самостоятельная работа студента **54 ак.ч.** 

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (М.В.Меркулов)  |

### Б1.В.ОД.1 «Нефтегазовое промысловое оборудование»

**Целью преподавания дисциплины** является углубление ранее полученных знаний и формирование практических навыков эксплуатации нефтегазового промыслового оборудования, освоение базового программного обеспечения для решения возникающих ознакомлении магистрантов с путями, методами и приемами оптимизации задач, основных сопутствующих технологических процессов повышения ДЛЯ энергосбережения и энергоэффективности геологоразведочных работ области В нефтегазодобычи.

Содержание теоретического раздела дисциплины **Б1.В.ОД.1** «**Нефтегазовое промысловое оборудование**» включает темы занятий, представленных в виде 8 модулей, общей трудоемкостью 108 часов:

Общие положения о машинах, применяемых при строительстве магистральных газонефтепроводов. Понятие о машине.

Транспортные и автомобильные тягачи. Классификация. Основные системы тягачей с гусеничным и пневмоколёсным движителями. Машины для транспортировки труб и плетей. Трубовозы. Плетевозы. Общее устройство и конструктивные схемы прицеповроспусков и полуприцепов для транспортировки труб и плетей

Комплекс специальных транспортных машин для доставки крупногабаритных грузов. Комплекс транспортных средств с движителями роторно-винтового, шагающего типов и на воздушной подушке.

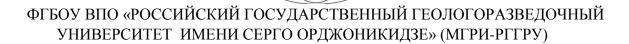
Машины для подготовительных работ (бульдозеры, рыхлители, лесоповалочные машины, корчеватели-собиратели, кусторезы, скреперы и др.).

Машины для бестраншейной прокладки трубопроводов. Устройство современных трубогибочных машин. Вспомогательное оборудование для гнутья труб.

Машины для очистки и изоляции трубопроводов в трассовых условиях. Очистные машины. Назначение, принцип действия и устройство. Типы очистного инструмента, сравнительная эффективность, надежность, долговечность.

Машины для производства земляных работ. Машины для разработки подводных траншей. Земснаряды цикличного и непрерывного действия.

Машины и оборудование для продувки и пневматических испытаний газонефтепроводов. Классификация арматуры по назначению и конструкциям. Задвижки клиновые и шиберные. Краны шаровые и пробковые. Вентили. Приводы запорной арматуры.


Формируемые компетенции: ПК-1, ПК-4, ПК-6, ПК-8, ПК-16, ПК-17, ПК-18, ПК-19, ПК-23.

Курс 2 (4 семестр, кол-во недель 13, зачет)

Общая трудоемкость **33.е./ 108 ак.ч.**, лекции - **0 ак.ч.**, практические занятия - **13 ак.ч.**, самостоятельная работа магистранта **95 ак.ч.** 

| Зав. кафедрой, профессор              | (В.А. Косьянов)  |
|---------------------------------------|------------------|
| Преподаватель-разработчик, профессор. | (М.И. Григорьев) |

### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ



Факультет Техники разведки и разработки (ФТРиР) Кафедра Механизации, автоматизации и энергетики горных и геологоразведочных работ

### «Утверждаю»

| Директор      | института           |
|---------------|---------------------|
| современных   | технологий          |
| геологической | разведки, горного и |
| нефтегазового | дела                |
| Н.Н. Клочков  |                     |
|               |                     |
| « <u>25</u> » | мая 2015 г.         |

# АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.ОД.3 Технологическое обслуживание объектов магистральных нефтепроводов

| Уровень основной образовательной программы магистр                                       |                   |
|------------------------------------------------------------------------------------------|-------------------|
| Направление подготовки —21.04.01 «Нефтегазовое дело»                                     |                   |
| Специальность Ресурсосберегающие технологии в нефтепроду                                 | жтообеспечении    |
| Форма обучения очная                                                                     |                   |
| Срок освоения ООП 2 года                                                                 |                   |
| Институт- Современных технологий геологической разведки, горного и нефтегазового дела    |                   |
| Кафедра <u>Механизации, автоматизации и</u> энергетики горных и геологоразведочных работ |                   |
| Начальник Учебно-методического управления                                                | (Денисова Л.Е.)   |
| Заведующий кафедрой профессор                                                            | _ (Косьянов В.А.) |
| Преподаватель-разработчик профессор                                                      | _(Григорьев М.И.) |

Москва2015

В результате изучения учебной дисциплины Б1.В.ОД.3 «ТЕХНОЛОГИЧЕСКОЕ ОБСЛУЖИВАНИЕ ОБЪЕКТОВ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ» обучающиеся должны:

- **знать**: нормативно-методические документы, действующие в области саморазвития, повышения квалификации и мастерства; основные положения проектирования и эксплуатации МН; основные задачи, принципы и методы возникающие при эксплуатации МН; нормативно-методические документы, действующие в области МН при проведении экспериментальных и лабораторных исследований; основные схемы и системы МН; применять нормативно-методические документы, регламентирующие эксплуатацию МН;
- **уметь:** применять нормативно-методические основы саморазвития, повышения квалификации и мастерства; применять методы технического обслуживания МН;
- **иметь навыки**: владения научно-методическими основами саморазвития, повышения квалификации и мастерства; приемами технического обслуживания МН; научно-методическими основами МН в области геологической разведки при проведении экспериментальных и лабораторных исследований.

Программой учебной дисциплины предусмотрены следующие виды учебной работы:

| Вид учебной работы                            | Всего часов |
|-----------------------------------------------|-------------|
| Аудиторные занятия (всего)                    | 108         |
| В том числе:                                  |             |
| Лекции (Л)                                    | 12          |
| Практические занятия (ПЗ), Семинары (С)       | 12          |
| Лабораторные работы (ЛР)                      | 0           |
| Самостоятельная работа студента (СРС) (всего) | 48          |
| Контроль                                      | 36          |
| Вид промежуточной аттестации                  | Экзамен 3   |

Общая трудоемкость освоения учебной дисциплины составляет: 108 часа.

## АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ **Б1.В.ОД.4 «ЭНЕРГООПЕСПЕЧЕНИЕ БУРОВЫХ КОМПЛЕКСОВ»**

**Целью преподавания дисциплины** Б1.В.ОД.4 «Энергоопеспечение буровых комплексов» является овладение студентов общими знаниями в области устройства, конструивания и эксплуатации электрооборудования буровых комплексов и систем их энергообеспечения при производстве геологоразведочных работ.

Содержание теоретического раздела дисциплины **Б1.В.ОД.4 «Энергоопеспечение буровых комплексов»** включает темы занятий, представленных в виде 3 модулей, общей трудоемкостью 108 часа: Введение. Электрооборудование буровых комплексов. Системы энергообеспечения буровых комплексов. Сети и подстанции. Локальные энергоисточники. График нагрузок. Расчетная мощность. Основы оптимитизации энергообеспечения.

| энергоооеспечения.                                                                                                                                |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Формируемые компетенции: ПК-18, ПК-26, ПК-32, ПК-35.                                                                                              |                        |
| Курс <b>1</b> (2 семестр, кол-во недель 17, экзамен.)                                                                                             |                        |
| Общая трудоемкость <b>33.е.</b> / <b>108 ак.ч</b> ., практические занятия - <b>17</b> работа студента <b>10 ак.ч.,</b> контроль – <b>57 ак.ч.</b> | ак.ч., самостоятельная |
| Зав. кафедрой, профессор                                                                                                                          |                        |
| Преподаватель-разработчик                                                                                                                         |                        |

### Б1.В.ОД.7 «Теплоснабжение буровых установок»

**Целью преподавания дисциплины** является углубление ранее полученных знаний и формирование практических навыков в области теоретических основ расчета процессов теплообмена, приобретение знаний по технической термодинамике, теплопередаче и работе топливоиспользующих установок;

- получение необходимых теоретических и практических знаний, позволяющих выработать умение проектировать, исследовать и осуществлять эксплуатацию как источников, так и систем теплоснабжения, обеспечивая при этом надежность и экономичность работы систем;
- формирование знаний в области современных проблем теплоэнергетики, теплотехники и теплотехнологии.

Содержание теоретического раздела дисциплины **Б1.В.ОД.7** «**Теплоснабжение буровых установок**» включает темы занятий, представленных в виде 5 модулей, общей трудоемкостью 27 часов: *Микроклимат помещения*. *Тепловой баланс помещений*. *Расчетная мощность систем отопления*. *Теплопотери здания*. *Системы отопления и их классификация*. *Тепловой расчет систем отопления буровой установки*.

Формируемые компетенции: ОК-3, ПК-7, ПК-20, ПК-21

Курс 2 (3 семестр, кол-во недель 12, экзамен, курсовая работа)

Общая трудоемкость **43.е.**/ **144 ак.ч.**, лекции - **13 час ак.ч.**, практические занятия - **24 ак.ч.**, самостоятельная работа студента **53 ак.ч.** 

| Зав. кафедрой, профессор_      | (В.А. Косьянов) |
|--------------------------------|-----------------|
| Преподаватель-разработчик, доц | (М.В.Меркулов)  |

### Б1.В.ОД.8 «Двигатели внутреннего сгорания»

**Целью преподавания дисциплины** является углубление ранее полученных знаний и формирование практических навыков о термодинамических системах и процессах, протекающим в таких системах, термодинамических циклах в тепловых машинах, энергетическом балансе и КПД установок;

*обучение* методам технического обслуживания, эффективной и безотказной эксплуатации, выбору типа и мощности ДВС, особенностям их эксплуатации в различных режимах, и способам повышения эффективности их работы.

Содержание теоретического раздела дисциплины **Б1.В.ОД.8** «Двигатели внутреннего **сгорания**» включает темы занятий, представленных в виде 5 модулей, общей трудоемкостью 24 часа: Введение Предмет ДВС, его место и роль в подготовке инженерных кадров.Принцип действия поршневых ДВС. Теоретические циклы ДВС. Характеристика действительных рабочих циклов поршневых ДВС.Устройство и основные системы поршневых ДВС

Формируемые компетенции: ОК-3, ПК-7, ПК-20, ПК-21

Курс 2 (3 семестр, кол-во недель 12, экзамен)

Общая трудоемкость **43.е.**/ **144 ак.ч.**, лекции - **12 час ак.ч.**, практические занятия - **12 ак.ч.**, самостоятельная работа студента **53 ак.ч.** 

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (М.В.Меркулов)  |

# Б1.В.ОД.9 «Теплотехнические процессы в нефтегазовом производстве»

**Целью преподавания дисциплины** является освоение теоретических положений теплотехники и основных методик расчета, осознание физического смысла, умение проводить анализ сложных теплотехнических процессов, выбирать адекватную математическую модель и исследовать ее с применением компьютерных технологий.

Содержание теоретического раздела дисциплины **Б1.В.ОД.9** «**Теплотехнические процессы в нефтегазовом производстве»** включает темы занятий, представленных в виде 4 модулей, общей трудоемкостью 51 час: Введение. Изучаемый предмет, место и роль в подготовке инженерных кадров. Техническая термодинамика и ее методы. Смеси рабочих тел. Теплоемкость. Термодинамические процессы Законы термодинамики. Основные виды теплопереноса и их особенности. Теплопроводность, закон Фурье. Конвекция и конвективная теплоотдача. Теория подобия тепловых процессов. Тепловое излучение. Теплопередача. Теплообменные аппараты. Микроклимат помещения..

Формируемые компетенции: ПК-3

Курс **1** (2 семестр, кол-во недель 17, экзамен)

Общая трудоемкость **33.е.**/ **108 ак.ч.**, лекции - **17 час ак.ч.**, практические занятия - **34 ак.ч.**, самостоятельная работа студента **3 ак.ч.** 

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (Л.А.Эфстадиу)  |

### <u>Б1.В.ОД.10 «Методы оптимизации в энергообеспечении буровых</u> комплексов»

**Целью преподавания дисциплины** является углубление ранее полученных знаний и формирование практических навыков планирования экспериментов в энергоресурсосбережении и ознакомление студентов с линейными и нелинейными математическими моделями и методами их оптимизации.

Содержание теоретического раздела дисциплины **Б1.В.ОД.10** «Методы оптимизации в энергообеспечении буровых комплексов» включает темы занятий, представленных в виде 6 модулей, общей трудоемкостью 39 часов: Введение. Понятие оптимального управления в нефтегазовых системах. Моделирование и виды моделей. Математическое моделирование. Детерминированные и стохастические модели, математическая обработка результатов экспериментов, дисперсионный анализ, кореляционно-регрессионный анализ. Статистические задачи энергетики, основы теории надежности. Методы классической оптимизации. Методы математического программирования

Формируемые компетенции: ОК-3, ПК-7, ПК-20, ПК-21

Курс 2 (4 семестр, кол-во недель 13, экзамен, курсовой проект)

Общая трудоемкость **33.е.**/ **108 ак.ч.**, лекции - **13 час ак.ч.**, практические занятия - **26 ак.ч.**, самостоятельная работа студента **24 ак.ч.** 

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (М.В.Меркулов)  |

# Б1.В.ОД.11 «Измерение и контроль в технологических процессах нефтегазового производства»

**Целью преподавания дисциплины** является ознакомление с современными методами и техническими средствами измерения и контроля основных параметров различных технологических процессов нефтегазового производства, а так же развитие практических навыков оценки эффективности применения в производственных условиях различных датчиков и измерительных систем контроля параметров технологических процессов нефтегазового производства

Содержание теоретического раздела дисциплины **Б1.В.ОД.11** «Измерение и контроль в технологических процессах нефтегазового производства» включает темы занятий, представленных в виде 4 модулей, общей трудоемкостью 64 часа: Введение; Стадии и этапы создания автоматизированных систем; Описание функциональной схемы технологического процесса; Архитектура автоматизированной системы; Техническое задание на проектирование автоматизированных систем; Структурные схемы автоматизированных систем; Функциональные схемы автоматизации; Выбор контроллерного оборудования; Выбор средств коммуникации; Моделирование и симуляция автоматизированных систем.

Формируемые компетенции: ОПК-1, ПК-2, ПК-13

Курс 2 (4 семестр, кол-во недель 13, зачет)

Общая трудоемкость 33.е./ **108** ак.ч., лекции – **13** ак.час., практические занятия - **13** ак.ч., самостоятельная работа студента **82** ак.ч.

| Зав. кафедрой, профессор        | _( <b>В.А. Касьянов</b> ) |
|---------------------------------|---------------------------|
| Преподаватель-разработчик, доц. | _ (Д.А. Эфстадиу)         |

### **Б2.Н.1** «Научно-исследовательская практика».

**Целью научно-исследовательской практики** является приобретение опыта в исследовании актуальной научной проблемы, расширение профессиональных знаний, полученных в процессе теоретического обучения, формирование практических навыков ведения самостоятельной научной работы в инновационных условиях. Приобретение профессиональной компетенции, путем непосредственного участия в деятельности научно-исследовательских коллективов.

Содержание научно-исследовательской практики включает темы занятий: Вводная лекция. Распределенные системы управления в нефтегазовом деле. Централизованные системы управления в нефтегазовом деле. Оборудование для механизации работ при обустройстве и обслуживании нефтепромыслов. Силовой привод. Схема работы. Средства механизации спуско-подъемных операций. Стратегическое планирование, Программируемый логический контроллер (ПЛК). Lon Maker, Visual Control, и SCADA системы. Выполнение НИР по индивидуальным заданиям. Подготовка проведению научного исследования. Проведение экспериментального исследования.

Формируемые компетенции: **ОПК-5**, **ПК-2**, **ПК-4**, **ПК-5**, **ПК-9**, **ПК-12** Курс 1,**2** (1,2,3,4 семестр, контроль-4)

Общая трудоемкость **18 з.е**, лекции - **12 час ак.ч**., практические занятия - **648 ак.ч**., самостоятельная работа студента **648 ак.ч**.

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (М.Ю.Крылков)   |

### **Б2.П.1** «Научно-исследовательская практика».

**Целью научно-исследовательской практики** является знакомство и освоение ресурсосберегающих технологии в нефтепродуктообеспечении. Выработка у студентов знаний и соответствующих навыков правильного проведения стволов скважин для наиболее полного и эффективного извлечения нефти. Освоение производственных методов проектирования ресурсосберегающих технологии, применяемых на стадии добычи нефти, методов сепарации.

Содержание научно-исследовательской практики включает темы занятий, общей трудоемкостью 72 часов: Вводная лекция. Распределенные системы управления в нефтегазовом деле. Централизованные системы управления в нефтегазовом деле. Рекогносцировочный маршрут по территории съемки. Оборудование для механизации работ при обустройстве и обслуживании нефтепромыслов. Силовой привод. Схема работы. Средства механизации спуско-подъемных операций. Стратегическое планирование, Программируемый логический контроллер (ПЛК). Lon Maker, Visual Control, и SCADA системы. Выполнение НИР по индивидуальным заданиям.

Формируемые компетенции: ОПК-5, ПК-2, ПК-4, ПК-5, ПК-9, ПК-12

Курс 1,2 (1,3 семестр, контроль-13)

Общая трудоемкость **23.е.**/ **72 ак.ч.**, лекции - **1 час ак.ч.**, практические занятия - **72 ак.ч.**, самостоятельная работа студента **72 ак.ч.** 

| Зав. кафедрой, профессор        | (В.А. Косьянов) |
|---------------------------------|-----------------|
| Преподаватель-разработчик, доц. | (М.Ю. Крылков)  |

### Б2.П.2 «Научно-исследовательская практика».

**Целью научно-исследовательской практики** является знакомство и освоение ресурсосберегающих технологии в нефтепродуктообеспечении. Выработка у студентов знаний и соответствующих навыков правильного проведения стволов скважин для наиболее полного и эффективного извлечения нефти. Освоение производственных методов проектирования ресурсосберегающих технологии, применяемых на стадии добычи нефти, методов сепарации.

Содержание научно-исследовательской практики включает темы занятий, общей трудоемкостью 220 часов: Вводная лекция. Распределенные системы управления в нефтегазовом деле. Централизованные системы управления в нефтегазовом деле. Рекогносцировочный маршрут по территории съемки. Оборудование для механизации работ при обустройстве и обслуживании нефтепромыслов. Силовой привод. Схема работы. Средства механизации спускоподъемных операций. Стратегическое планирование, Программируемый логический контроллер (ПЛК). Lon Maker, Visual Control, и SCADA системы. Выполнение НИР по индивидуальным заданиям.

Формируемые компетенции: **ОПК-5**, **ПК-2**, **ПК-4**, **ПК-5**, **ПК-9**, **ПК-12**Курс 1, (2 семестр, контроль - 2)
Общая трудоемкость **6 з.е**, лекции - **4 час ак.ч**., практические занятия - **216 ак.ч**.

| Зав. кафедрой, профессор        | _ (В.А. Косьянов) |
|---------------------------------|-------------------|
| Преподаватель-разработчик, доп. | (М.Ю.Крылков)     |

### Б1.В.ДВ.2.1 «Возобновляемые источники энергии»

### Целью преподавания дисциплины является:

- ознакомление студентов с возможностями применения нетрадиционных и возобновляемых источников энергии при энергоснабжении горных работ;
- закрепление представлений о состоянии и перспективных развитиях нетрадиционных и возобновляемых источников энергии, политике Правительства РФ в области нетрадиционной энергетики;
- обучение физическим основам преобразования солнечной энергии в тепловую и электрическую, конструкциях и схемах систем солнечного тепло-и электроснабжения, преобразование энергии ветра, основах использования морских волн и течений, способах использования геотермальной энергии в системах теплоснабжения, возможностях применения биомассы и твердых бытовых отходов в качестве энергетического топлива.

Содержание Б1.В.ДВ.2 теоретического раздела дисциплины «Возобновляемые источники энергии» включает занятий, темы представленные в виде 7 модулей, общей трудоемкостью 18 часа: общие сведения о нетрадиционных и возобновляемых источниках энергии, гелиоэнергетика, ветроэнергетика, геотермальная энергетика, преобразование энергии океана, биоэнергетика, экологические проблемы нетрадиционных и возобновляемых источников энергии

Формируемые компетенции: ПСК-10-3

Курс 1 (1 семестр, количество недель, зачет, 18-недель)

Общая трудоемкость **2 з.е./ 72 ак.ч**., практические занятия — 18 **ак.ч**., самостоятельная работа студента — **54 ак.ч**.

| Заведующий кафедрой       | (В.А. Косьянов) |
|---------------------------|-----------------|
|                           |                 |
| Преподаватель-разработчик | (А.Ю. Башкуров) |

Москва, 2015 г.