+7 (495) 255-15-10     10:00 - 18:00    
   +7 (495) 255-40-20     10:00 - 18:00    
   +7 (495) 023-24-04     10:00 - 19:00    
   +7 (495) 255-15-10     доп. 2580

МГРИ принял участие в совещании Минобрнауки и конкурсе студенческих медиа

08.12.2021 15:00:00

Как известно, 2021 год ознаменовали Годом науки и технологий, и, действительно, год максимально оправдывает своё название. За это время было проведено большое количество мероприятий, посвященных научной деятельности, опубликовано несколько сотен тысяч публикаций в социальных сетях и в СМИ, посвящённых событиям тематического года.

Как отмечает заместитель министра науки и высшего образования РФ Елена Дружинина:

«Этот год стал необычным для всего научно-образовательного сообщества, для студентов вузов. Наш Президент объявил его Годом науки и технологий и тем самым определил приоритеты для всего гражданского общества нашей страны. Это и привлечение внимания молодежи к науке, к разработкам и исследовательской деятельности, а также продвижение научных знаний. Важно не только работать над научными проектами и современным разработками, важно уметь искать способы объяснять суть такой непростой работы».

Продолжая тему Года науки и технологий, хочется выделить недавно прошедшее мероприятие, посвящённое популяризации научной деятельности и освещением ее студентами со всей страны.

В период с октября по декабрь 2021 года Министерство науки и высшего образования РФ и ФГБОУ ВО «РГУ им. А.Н. Косыгина» проводили конкурс среди представителей молодежных медиа и студенческих СМИ. Конкурс способствовал выявлению наиболее талантливых молодых журналистов, фотографов, видеографов и блогеров. Заявки на участие принимались от студентов в возрасте от 16 до 35 лет, являющихся представителями высших и средних учебных заведений, редакций студенческих СМИ и отдельных представителей молодежных СМИ.

К участию в конкурсе допускались печатные и электронные публикации, каналы в мессенджерах, блоги и прочие социальные медиа.

Цель конкурса — поддержать развитие творческих инициатив молодежи, самореализацию обучающихся в сфере продвижения науки и образования в студенческой среде, привлечь студентов к общественной деятельности, а также поднять уровень медиа-культуры, наладить межвузовские связи и создать кадровые резервы из представителей творческой молодежи.

Конкурс проходил по следующим номинациям: 

  • «Лучшая публикация»
  • «Лучший сайт»
  • «Лучшее видео и лучшее фото»
  • «Лучший блогер среди студентов» по направлениям «Россия моими глазами», «Мой университет» и «Год науки и технологий».

Подать заявку можно было на несколько номинаций сразу. От нашего университета в конкурсе приняли участие несколько студентов. В номинации «Лучшее видео» — Михаил Еремин, в номинации «Лучшая публикация» — Валентина Бобрышева, в номинации «Лучшее фото» — Михаил Еремин, Анна Шелементьева, Алексей Отмашкин, Анастасия Чучадеева и Вероника Кирсанова, в номинации «Лучший блогер среди студентов» — Анна Шелементьева.

В финал вышли Валентина Бобрышева, Анна Шелементьева и Алексей Отмашкин и были приглашены на Всероссийский форум студенческих СМИ, который прошёл 3-4 декабря.

На форуме участники знакомились с медийщиками со всей страны, слушали интересных спикеров и участвовали в различных мастер-классах. 4 декабря состоялось торжественное награждение и совещание руководителей пресс-служб и проректоров по информационной политике в здании Минобрнауки России. От МГРИ в совещании приняли участие и.о. проректора по международной деятельности и региональному сотрудничеству Анастасия Машкова и начальник отдела протокола и внешних связей Дарья Щедрова. Дипломы и ценные призы победителям и призерам конкурса вручала заместитель министра науки и высшего образования РФ Елена Дружинина.

Вот как отзываются о программе форума наши студенты, финалисты конкурса студенческих СМИ:

«Программа форума была очень насыщенной. В течение двух дней мы смогли принять участие во множестве различных тренингов по развитию профессиональных качеств сотрудников СМИ и медиа. Больше всего мне понравилась совместная работа в командах. Интересно было погрузиться в атмосферу реального медиа-производства: в сжатые сроки мы должны были подготовить и защитить свой проект. Одним из самых приятных событий форума для меня стало знакомство и обмен опытом с медийщиками из других вузов России», — Алексей Отмашкин.

«На форуме мне удалось пообщаться с медийщиками со всей страны, там собрались не только журналисты, но и ребята, который просто интересуются медиа сферой. Это был интереснейший опыт. Мы не стали победителями, но выйти в финал – это уже маленькая победа», — Анна Шелементьева.

«Мне понравилось выполнять задания с другими финалистами конкурса. Я попала в команду, где люди были полностью вовлечены в сферу медиа, и нам удалось за короткий срок стать самостоятельной редакцией. По распределённым ролям я стала корреспондентом, и в моих задачах учитывалась оригинальность, быстрота и актуальность тем. Из спикеров на форуме мне посчастливилось задать вопросы Андрею Бургарту – руководителю медиахолдинга CROCUS MEDIA. Его, как и меня, интересовал переход социальных сетей в мета-пространство. Во время дискуссии мы обсудили геймификацию в журналистике и будущее медиа. После своего мастер-класса он предложил финалистам пройти стажировку в CROCUS TV», — Валентина Бобрышева.

Поздравляем наших студентов с выходом в финал и желаем дальнейших творческих успехов!


Последствия разливов мазута. Экспертное мнение
Последствия разливов мазута. Экспертное мнение

В конце 2024  года мы стали свидетелями серьезной экологической катастрофы в районе Керченского пролива. 15 декабря, во время шторма, потерпели крушение два танкера: «Волгонефть 212» и «Волгонефть 239». В результате инцидента в море оказалось около 3,7 тысячи тонн нефтепродуктов, что вызывает серьезные опасения за состояние экосистемы Черного моря. К активному обсуждению в СМИ привлекаются эксперты, в том числе преподаватели МГРИ, которые дают комментарии ведущим телеканалам страны. Мы попросили Рукавицына Вадима Вячеславовича, доцента кафедры экологии и природопользования Российского государственного геологоразведочного университета имени Серго Орджоникидзе (МГРИ) рассказать о том, что собой представляет мазут и какие существуют методы ликвидации последствий разливов мазута Общие сведения Мазут представляет собой сложную смесь, состоящую из углеводородов, нефтяных смол, карбенов, карбоидов, асфальтенов и различных органических соединений, содержащих металлы. Физико-химические характеристики конкретной пробы мазута в значительной степени зависят от качества исходного сырья, используемого в производстве, процесса переработки, а также условий хранения и смешивания. Химический состав мазута включает углерод, водород, кислород, азот, серу и золу. В более вязких вариантах продукта содержится около 89% углерода и 12% водорода, что сопровождается высокой концентрацией серы. В менее вязких мазутах уровень углерода снижен, что, в свою очередь, приводит к уменьшению плотности и вязкости вещества. Плотность вещества имеет значение при определении весового количества топлива в резервуарах. Как только меняется температура, меняется и плотность вязкости жидкости. В некоторых случаях увеличение температуры приводит к уменьшению плотности и наоборот. Мазут бывает различных марок. Наиболее распространенные: Ф-5, Ф-12, М-40 и М-100.  Ф5 и Ф12  - это флотский мазут, который представляет собой разновидность остаточного топлива, применяемого для работы судовых энергоустановок. Числа 5 и 12 обозначают условную вязкость в мм кв./с при температуре 50°С. Основной потребитель таких мазутов – военно-морской флот РФ, поскольку высокая цена топлива ограничивает их коммерческое использование прочими структурами. Температура застывания таких мазутов -5°С и -8°С соответственно.  М-40  используется для сжигания в отопительных установках, в теплогенераторах (используемых в сельском хозяйстве для сушки зерна и фруктов). Температура застывания +10°С. М-100 используется в качестве котельного топлива для различных отопительных систем, печей, систем парового отопления и технологических установок. Отличается от М-40 вязкостью, а также наличием в его составе различных видов добавок: дизельного топлива, депрессорных присадок, керосиновых фракций и пр. Температура застывания +25°С. Таким образом и плотность разных марок мазута тоже разная. У мазута Ф-5 – 955 кг/м3 при 20°С, у Ф-12 – 960 кг/м3 при 20°С (ГОСТ 10585-99 Топливо нефтяное. Мазут.), М-40 – порядка 965 кг/м3 при 20°С, М100 - порядка 978 кг/м3 при 20°С. Последние 2 не нормируются, но в любом случае в крайне редких случаях выше 1000 кг/м3 (плотность воды). Мазут широко применяется в морском и речном транспорте, в промышленном секторе и в сфере жилищно-коммунального хозяйства. В частности, его используют: в качестве топлива для паровых котлов, котельных установок и промышленных печей; как сырье для производства флотского и судового мазута, а также тяжелого моторного топлива для дизельных двигателей с крейцкопфной схемой и бункерного топлива; для производства моторных масел, битумов и смазочных материалов. На протяжении долгого времени мазут выполнял роль основного, резервного и технологического топлива, что способствовало развитию множества секторов, связанных с его использованием. Исходя из вышесказанного можно сделать вывод, что мазут – часто используемый вид органического топлива, плотность которого ниже плотности воды. Однако с понижением температуры возрастает и плотность, превосходя плотность воды, особенно при застывании. Аварии с разливом мазута К сожалению, аварии с разливом различных нефтепродуктов происходят регулярно. Разливы именно мазута также случаются. Например, 14 сентября 2021 г. у порта Тамань в черном море, произошел крупный разлив мазута.  Во время заправки сухогруза произошел разлив мазута, который покрыл масляной плёнкой 450 кв. м водной поверхности. Удаление от береговой линии составило около 5 км. Согласно последним данным, разлив произошел из-за нарушения техники безопасности при заправке судна. Разлив был оперативно локализован с привлечением 18 человек и 3 единиц техники. Ущерб составил около 6 миллионов рублей. (https://terra-ecology.ru/stati/razlivy-nefteproduktov-v-rossii-za-2020-god/). В 2020 году в результате взрыва цистерны в г. Находка в окружающую среду попало свыше 2500 тонн мазута. По некоторым данным, взрыв произошел из-за износа оборудования, которое больше не могло выдерживать высокие нагрузки. Взрыв произошел практически в самом центре города, попав в озеро "Солёное". К сожалению, действия по ликвидации разлива были приняты недостаточно оперативно, что повлекло за собой гибель флоры и фауны в озере, а также в его прибрежной зоне (https://tass.ru/proisshestviya/7986597) Нефтеналивное судно «Волгонефть-139» типа река—море, перевозившее мазут, в 04.50 МСК 11.11.2007 разломилось в районе якорной стоянки с южной стороны острова Тузла. Заякоренная носовая часть танкера после аварии осталась на месте, а корму под действием ветра и течений отнесло к острову Тузла и выбросило на мель. В результате перелома танкера, перевозившего 4777 т мазута, произошёл разлив около 1300—1600 т нефтепродуктов. Загрязненный корабль убрали. Однако застывший мазут осел на дно, загрязнив песок и дно. При прогреве воды вязкость мазута уменьшилась, и его кусочки начали всплывать, создавая вторичные загрязнения (https://www.nkj.ru/archive/articles/14130/). Влияние разливов мазута на окружающую среду Если говорить о влиянии разливов мазута на окружающую среду, то стоит выделить ее компоненты, которые подвергаются загрязнению и то, каким образом оно происходит. Разливы мазута представляют собой серьезную экологическую угрозу, способную вызвать долгосрочные негативные последствия для водных экосистем и окружающей среды. При попадании в водоем мазут образует пленку на поверхности, которая может сжиматься под воздействием ветра или растекаться в условиях спокойной погоды. Часть вещества осаждается на дно, где оно может оставаться на протяжении десятилетий, отравляя донные отложения и угрожая морской жизни, постепенно выходя из отложений в воду, являясь источником вторичных загрязнений. Загрязнение водоемов приводит к гибели части фауны и морфологическим изменениям у оставшихся организмов. Например, рыба, подверженная загрязнению, может иметь неприятный запах, что делает ее неприемлемой для потребления людьми. Водоплавающие птицы страдают от потери гигроскопичности яиц и ухудшения качества оперения, что может привести к их гибели от холода и интоксикации. Полиароматические углеводороды (ПАУ), содержащиеся в мазуте, являются канцерогенами, что делает их особенно опасными для организмов, находящихся в контактной зоне. Сравнительно легкие фракции мазута быстро испаряются и смываются, вызывая кратковременный токсический эффект. Однако тяжелые фракции, содержащие смолы и асфальтены, могут создавать устойчивые очаги загрязнения, значительно ухудшая физико-химические свойства почвы и атмосферы. Испаряясь и загрязняя воздух, углеводороды могут оказывать токсический эффект на птиц, животных, обитающих на загрязненных берегах, и проживающих радом людей. Кроме того, мазут, попадая в почву, ухудшает ее способность впитывать и удерживать влагу, что приводит к гибели растительности и изменению экосистем. Загрязненная почва теряет воздухопроницаемость, что затрудняет нормальное развитие корней растений. При этом мазут также может проникать в подземные воды, что влечет за собой дальнейшие угрозы для здоровья человека, поскольку загрязненные источники водоснабжения могут попадать в питьевую воду. Так как мазут – это биоразлагаемое соединение, под воздействием солнца и микроорганизмов он распадается до неорганических соединений, что значительно снижает его негативное воздействие. Происходит это при положительных температурах в течении нескольких месяцев и даже лет (при наиболее сильных загрязнениях). Однако на дне, в грунтовых водах или в песке такое разложение происходит крайне медленно (десятки лет). Особенно опасны разливы мазута в северных регионах, так как при отрицательных температурах биоразложение практически отсутствует и таким образом вред экосистеме наносится значительно более длительное время. Влияние на экономику и социум Загрязнение водных объектов и экосистем мазутом приводит также к серьезным экономическим и социальным последствиям, которые затрагивают различные сферы жизни и деятельности населения. Одним из наиболее ощутимых последствий является ущерб рыбной промышленности и туризму. Мазут, попадая в водоемы, не только убивает рыбу и другие водные организмы, но и приводит к сокращению уловов, что негативно сказывается на жизни местных рыболовов и всей экономики регионов, зависящих от рыболовства. Загрязненные водоемы становятся непригодными для купания и рекреации, что отпугивает туристов и наносит удар по туристической индустрии. Курорты и пляжи, исторически привлекавшие отдыхающих, сталкиваются с падением числа посетителей, что еще больше усугубляет экономическую ситуацию в этом секторе. В результате страдают не только рыболовы и туристические компании, но и связанные с ними отрасли, такие как гостиничный бизнес, рестораны и услуги. Другим значительным аспектом являются расходы на очистку и восстановление экосистем. После загрязнения необходимо мобилизовать ресурсы для ликвидации последствий, что может обойтись государству и бизнесу в миллионы рублей. Эти средства направляются на запуск программ по очистке воды, восстановлению загрязненных территорий, а также реабилитации рыболовства и других видов деятельности, связанных с использованием водных ресурсов. Такие затраты могут повлиять на местные бюджеты, отвлекая средства, которые могли бы быть использованы для других социальных нужд, таких как образование, инфраструктура или здравоохранение. Кроме того, загрязнение мазутом оказывает серьезное влияние на здоровье местного населения. Контакт с загрязненными водами может привести к различным заболеваниям, включая кожные инфекции, респираторные заболевания и проблемы с пищеварением. Интоксикация, вызванная потреблением рыбы и других продуктов, загрязненных мазутом, создает серьезные риски для здоровья, особенно для детей и беременных женщин, которые более уязвимы к токсическим веществам. Осознание этих угроз может вызывать у местных жителей чувство тревоги и неопределенности, что еще больше ухудшает качество их жизни и стабильность в регионе. В итоге, разливы мазута представляют собой многостороннюю угрозу для экосистем, общества и экономики, оказывая негативное влияние на водные объекты, дно водоёмов, почвы и грунтовые воды, что требует комплексного подхода к предотвращению и ликвидации их последствий. Ликвидация разливов мазута Для ликвидации загрязнения мазутом поверхности водного объекта, донных отложений, почвы и грунтовых вод применяются различные технические решения, каждое из которых направлено на минимизацию экологических последствий и восстановление экосистем. Первым шагом в борьбе с загрязнением водоемов является удаление мазута с их поверхности. Для этого используют специальные плавучие барьеры (боны), которые ограничивают распространение пятен нефтепродуктов. После сдерживания загрязнения, мазут собирается с помощью вакуумных насосов и насосных агрегатов. Эффективным решением становится применение поглощающих материалов, таких как сорбенты на основе полимеров или натуральных волокон, которые способны впитывать и удерживать нефтепродукты, облегчая последующую ее утилизацию. Также для ликвидации разливов используются биопрепараты, ускоряющие биоразложение мазута. Загрязненные донные отложения требуют особого внимания. Одним из наиболее распространенных методов их очистки является механическая экскавация, при которой загрязненные слои ила и песка удаляются и далее подвергаются захоронению или переработке. Кроме того, эффективным подходом может стать использование гидродинамических методов, которые включают срезание и откачивание загрязненных отложений на поверхность с помощью специальных земснарядов и насосов. Для очистки почвы применяются биоремедиация и физико-химические методы. Биоремедиация включает в себя использование микроорганизмов, способных разлагать нефтепродукты и восстанавливать почву. Это может быть как естественный процесс, так и активируемый инъекцией специализированных культур. В то же время физико-химические методы представляют собой более механизированный подход, включающий экстракцию, термическую обработку и химикаты, которые помогают разлагать углеводороды в загрязненных почвах. Грунтовые воды, загрязненные мазутом, требуют применения специализированных технологий очистки. Одним из решений является создание насосных скважин, которые позволяют откачивать загрязненную воду для дальнейшей очистки. Этот процесс зачастую включает фильтрацию или обратный осмос. Также эффективными являются методы реабилитации водоносного горизонта, когда специальные реагенты вводятся непосредственно в загрязненные участки с целью разложения и нейтрализации углеводородов, тем самым улучшая качество грунтовых вод. Таким образом, эффективное устранение загрязнения мазутом требует многостороннего подхода с использованием различных технологий, адаптированных к конкретным условиям и типам загрязнения.

15/01/2025

Международный проект МГРИ со странами СНГ
Наука и инновации
Международный проект МГРИ со странами СНГ

Российский государственный геологоразведочный университет имени Серго Орджоникидзе (МГРИ) в 2024 г. стал победителем конкурса заявок Министерства науки и высшего образования РФ на обеспечение проведения научных исследований российскими научными организациями и (или) образовательными организациями с организациями стран СНГ и Ближнего Зарубежья в рамках обеспечения реализации программы двух- и многостороннего научно-технологического взаимодействия. Тематика исследований: «Разработка технологически обоснованных решений прогноза и освоения нефтегазоносности глубокопогруженных толщ Каспийского бассейна и создание цифровой карты перспективных зон нефтегазонакопления и поисковых объектов» Иностранный партнер проекта - Институт нефти и газа Министерства Науки и Образования Азербайджанской Республики, ведущий центр по изучению углеводородных систем больших глубин, проведению фундаментальных исследований в области разведки и разработки месторождений нефти и газа. Цель первого этапа работ состояла в создании геоинформационной базы данных исходной геолого-геофизической и геохимической информации, а также калибровочных данных, в т. ч. для моделирования углеводородных систем. Для этого был проведен сбор и обобщение геолого-геофизических данных по результатам глубокого бурения, геофизических и геохимических исследований; анализ, структурирование, приведение к единым форматам геологических, геофизических, геохимических данных, цифровизация картографических данных и подготовка геоинформационной базы данных для бассейнового анализа; геохимические исследования процессов нефтеобразования методом пиролитической хромато-масс-спектрометрии с целью определения индивидуального компонентного состава углеводородов и последующего моделирования УВ систем. Собранные и обработанные материалы, а также предварительные аналитические исследования позволят во втором этапе (2025 г.): исследовать генерационно-аккумуляционные углеводородные системы на основе создания пространственно–временных цифровых моделей их эволюции; провести полнообъемную сейсмическую интерпретацию по эталонным полигонам изучаемого региона; разработать технологически обоснованные решения прогноза нефтегазоносности глубокопогруженных горизонтов Каспийского бассейна, выработанные на основе проведения пиролитических, изотопно-геохимических и хроматографических исследований, модельных построений, обоснования закономерностей изменения катагенетических преобразований, анализа критериев оценки перспектив нефтегазоносности больших глубин с учетом геодинамики и геофлюидюдинамики; создать цифровую карту перспективных зон нефтегазонакопления и поисковых объектов Каспийского бассейна. |SLIDER| «На сегодняшний день промышленная нефтегазоносность больших и сверхбольших глубин уже доказана – открыты углеводородные гиганты во многих нефтегазоносных провинциях мира. Учитывая высокую перспективность поисков УВ глубокопогруженных отложений Каспийской впадины, проведение исследований в этом направлении представляется весьма перспективным, как с точки зрения изучения фундаментальных процессов нефтегазообразования, так и прогнозирования УВ потенциала недр и разработки долгосрочной стратегии развития нефтегазового комплекса. В связи с этим весьма актуально внедрение здесь подходов и методов, снижающих геологические, экономические и технологические риски поисков УВ. Нет сомнения, что поиски УВ здесь должны предварять серьезные фундаментальные научные исследования с привлечением широкого комплекса геологических, геохимических и других данных и с использованием 3D бассейнового моделирования» - рассказал руководитель проекта, заведующий кафедрой геологии и разведки месторождений УВ МГРИ, д.г-м.н., профессор Вагиф Керимов. «Результаты работы позволят повысить эффективность геологоразведочных работ вследствие внедрения разработанных решений прогноза нефтегазоносности глубокопогруженных горизонтов Каспийского бассейна, снизить геологические риски при поисках месторождений нефти и газа. Использование цифровой карты перспективных зон нефтегазонакопления и поисковых объектов российскими недропользователями при выборе объектов последующего лицензирования может значительно снизить их коммерческие риски» - отметил директор Департамента науки и технологий МГРИ, к.г.-м.н., доцент Рустам Мустаев.

09/01/2025

Международный проект МГРИ с Республикой Зимбабве
Наука и инновации
Международный проект МГРИ с Республикой Зимбабве

Россия комплексно подходит к взаимодействию с Африкой, выстраивая диалог с подавляющим большинством государств на самые разнообразные темы — от атомных технологий и развития агропрома до космических и высоких технологий, сотрудничества в сфере информационной безопасности, искусственного интеллекта, цифровизации.  Российский государственный геологоразведочный университет имени Серго Орджоникидзе (МГРИ) является активным участником международного диалога со странами Африки, что подтверждает работа университета по проекту «Создание цифровой прогнозно-минерагенической основы Республики Зимбабве с использованием данных дистанционного зондирования и последующего выявления тектонических и флюидоразрывных признаков структур, контролирующих распределение месторождений минерального сырья». Проект реализуется при финансовой поддержке Министерства науки и высшего образования РФ, направленной на обеспечение научно - технологического взаимодействия российских университетов и НИИ с организациями стран Африки. В 2024 г. были завершены работы по выделению предпосылок и признаков месторождений и рудных полей по каждому виду минерального сырья, формированию фундаментального базиса и методики комплексного анализа данных дистанционного зондирования и выявления тектонических и флюидоразрывных признаков глубинных структур и созданию основы прогнозно-минерагенической карты с выделением рудных районов с использованием созданной базы данных в геоинформационной среде. «Впервые для Республики Зимбабве приведено описание всего комплекса месторождений полезных ископаемых с характеристикой всех структурно-формационных комплексов: архейского фундамента Зимбабвийского кратона, осадочного чехла и зон мезозойской тектоно-магматической активизации. Мы смогли на геоинформационной основе создать цифровые карты металлогенического и минерагенического районирования архейского и протреозойского фундамента, осадочного чехла и зон тектоно-магматической активизации региона» - рассказал научный руководитель проекта, заведующий кафедрой геологии месторождений полезных ископаемых МГРИ, д.г-м.н., профессор Петр Игнатов. «Использование цифровой прогнозно-минерагенической карты районирования российскими недропользователями при выборе объектов последующего лицензирования может значительно снизить риски геологоразведочных работ и стать основой для формирования программ долгосрочных и среднесрочных планов геологоразведочных работ», - отметил директор Департамента науки и технологий МГРИ, к.г.-м.н., доцент Рустам Мустаев. |SLIDER|

09/01/2025

Новогоднее поздравление от ректора МГРИ
Новогоднее поздравление от ректора МГРИ

Дорогие коллеги!  Сердечно поздравляю вас с наступающим Новым, 2025 годом!  Уходящий год был полон ярких событий, значимых достижений и, конечно же, плодотворной совместной работы, которая сделала наш университет ещё сильнее и успешнее.  Мы реализовали множество важных проектов, преодолели немало трудностей, и всё это – благодаря вашей преданности делу, профессионализму и неугасаемому энтузиазму. Каждый из вас – неотъемлемая часть нашей большой и дружной семьи, и именно ваша ежедневная работа является залогом нашего успеха. Пусть Новый год станет годом новых свершений, вдохновения и реализации амбициозных планов! Желаю вам крепкого здоровья, семейного благополучия, ярких моментов и, конечно же, исполнения всех ваших желаний!  Пусть в Новом году вас окружают любовь, понимание и поддержка близких людей.  С Новым годом! С уважением,  Панов Юрий Петрович Ректор Российского государственного геологоразведочного университета имени Серго Орджоникидзе (МГРИ)

30/12/2024